Quantcast
Channel: Art – Sauropod Vertebra Picture of the Week
Viewing all 165 articles
Browse latest View live

Get your relative-lengths-of-sauropod-necks T-shirts!

$
0
0

Are you a lover of sauropod necks?

Do you long to demonstrate to your friends and family how much better[1] they are than the necks of other long-necked critters?

Are you crazy for the Taylor and Wedel (2013a) paper on why sauropods had long necks; and why giraffes have short necks, but disappointed that it’s not, until now, been obtainable in T-shirt form?

front

back

If so, it’s your lucky day! You can now buy a T-shirt featuring Figure 1 on the front (necks of a human, giraffe, ostrich, Paraceratherium[2], Therizinosaurus, Gigantoraptor, Arambourgiania and Tanystropheus) and Figure 3 on the back (necks of Diplodocus, Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus).

And here it is in real life — sorry I couldn’t get a more photogenic model at short notice.

DSCN0800-front

DSCN0796-back

And here are the original figures as they appeared in the paper. The full captions, as reproduced here, are also on the shirts — just in case you need to check details while you’re out and about.

Figure 1. Necks of long-necked non-sauropods, to scale. The giraffe and Paraceratherium are the longest necked mammals; the ostrich is the longest necked extant bird; Therizinosaurus and Gigantoraptor are the largest representatives of two long-necked theropod clades; Arambourgiania is the longest necked pterosaur; and Tanystropheus has a uniquely long neck relative to torso length. Human head modified from Gray’s Anatomy (1918 edition, fig. 602). Giraffe modified from photograph by Kevin Ryder (CC BY, http://flic.kr/p/cRvCcQ). Ostrich modified from photograph by “kei51” (CC BY, http://flic.kr/p/cowoYW). Paraceratherium modified from Osborn (1923, figure 1). Therizinosaurus modified from Nothronychus reconstruction by Scott Hartman. Gigantoraptor modified from Heyuannia reconstruction by Scott Hartman. Arambourgiania modified from Zhejiangopterus reconstruction by Witton & Naish (2008, figure 1). Tanystropheus modified from reconstruction by David Peters. Alternating blue and pink bars are 1 m tall.

Figure 1. Necks of long-necked non-sauropods, to scale. The giraffe and Paraceratherium are the longest necked mammals; the ostrich is the longest necked extant bird; Therizinosaurus and Gigantoraptor are the largest representatives of two long-necked theropod clades; Arambourgiania is the longest necked pterosaur; and Tanystropheus has a uniquely long neck relative to torso length. Human head modified from Gray’s Anatomy (1918 edition, fig. 602). Giraffe modified from photograph by Kevin Ryder (CC BY, http://flic.kr/p/cRvCcQ). Ostrich modified from photograph by “kei51” (CC BY, http://flic.kr/p/cowoYW). Paraceratherium modified from Osborn (1923, figure 1). Therizinosaurus modified from Nothronychus reconstruction by Scott Hartman. Gigantoraptor modified from Heyuannia reconstruction by Scott Hartman. Arambourgiania modified from Zhejiangopterus reconstruction by Witton & Naish (2008, figure 1). Tanystropheus modified from reconstruction by David Peters. Alternating blue and pink bars are 1 m tall.

x

Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

No doubt these will be all the rage at SVPCA this year!

So get your T-shirts!

Update (the same evening)

As suggested by Kevin, I’ve now made the shirt available in a selection of eight versions: four men’s shirt, two women’s, and two kids. I don’t really understand what the differences are between them all, but they seemed to be the saner choices among those offered by Cafe Press. You can get any or all of them here. The shirt modelled above is the one called simple “White T-Shirt”. Please be aware that unlike all the others, the “Value T-Shirt” has no printing on the back — only Figure 1 on the front.

Notes

[1] i.e. bigger.

[2] Not to be confused with Paramecium.

References

Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36. doi:10.7717/peerj.36



Greatest. Video. Ever. Starring sauropod-on-theropod violence!

Frederik Spindler’s wooly brachiosaur

$
0
0

Aitor Ederra drew my attention to this painting by Frederik Spindler:

86e63b799a

It’s briefly discussed in a blog-post on changing norms in palaeo-art. (I think the blog is Spindler’s, but I can’t find confirmation — its About page is singularly uninformative.)

As so often when we look at All Yesterdays-style palaeo-art, the initial reaction is “no way!”, but that’s quickly followed by a more thoughtful “… but why not?”

Well, why not? We have bare-skinned African and Asian elephants, but not so long ago we had wooly mammoths. Even assuming that Giraffatitan was as naked as Loxodonta, why would its polar equivalents not have adapted the ancestral dinofuzz into a thick insulating coat?

 


One articulated Sauroposeidon to go, hold the perspective distortion, with a side of stinkin’ mammal

$
0
0

Order up!

Sauroposeidon OMNH 53062 articulated right lateral composite with giraffe

Sauroposeidon is stitched together from orthographic views of the 3D photogrammetric models rendered in MeshLab. Greyed out bits of the vertebrae are actually missing–I used C8 to patch C7, C7 to patch C6, and so on forward. The cervical ribs as reconstructed here were all recovered and they are in collections, but they’re in several jackets and boxes and therefore not easily photographed.

The meter bars are both one meter as advertised. The giraffe neck is FMNH 34426 (from this post), which is actually 1.7 meters long, but I scaled it up to 2.4 meters to match that of the tallest known giraffe. I think it’s cool that a world-record giraffe neck is roughly as long as two vertebrae from the middle of the neck of Sauroposeidon.

There are loads of little morphological details in the Sauroposeidon vertebrae that are clearer now than they were in our old photographs, but those will be stories for other posts.


Poetry for paleontologists: In Memoriam A.H.H., Canto 123, by Alfred, Lord Tennyson

$
0
0

Salton Sea sunset

There rolls the deep where grew the tree.

O earth, what changes hast thou seen!

There where the long street roars, hath been

The stillness of the central sea.

Ammonite display at Dinosaur Journey

The hills are shadows, and they flow

From form to form, and nothing stands;

They melt like mist, the solid lands,

Like clouds they shape themselves and go.

DSCN8352

But in my spirit will I dwell,

And dream my dream, and hold it true;

For tho’ my lips may breathe adieu,

I cannot think the thing farewell.

IMG_0707

* * * * * * * * * *

Photos by me, except where noted. From the top down:

  • Sunset at the Salton Sea, October 12, 2013.
  • Ammonite display at Dinosaur Journey, Museum of Western Colorado, May 1, 2014.
  • Sunrise at the North Rim of the Grand Canyon, May 26, 2012.
  • My hand with fossil eggshell from the Cedar Mountain Formation, May 5, 2014. Many thanks to Sharon McMullen for the photo.

The humerus of Brachiosaurus altithorax, part 1: the fossil

$
0
0

In the comments on Matt’s post about the giant new Argentine titanosaur specimens, Ian Corfe wondered why Benson et al. (2014) estimated the circumference of the humerus of Brachiosaurus altithorax instead of just measuring it. (Aside: I can’t find that data in their paper. Where is it?)

I replied:

Yes, the humerus is half-encased in a jacket, face down (we should post photos some time), which would make the circumference impossible to measure directly. But the mounted Brachiosaurus skeleton right outside the Field Museum (and the identical one at O’Hare Airport) have casts of that humerus, so measuring the circumference shouldn’t require any equipment more exotic than a stepladder. Maybe the anterior aspect was sculpted — but I doubt it, as there certainly was a time when the humerus was out of its jacket and mounted vertically.

Here is the evidence that the humerus wasn’t always in that jacket (from Getty Images):

Femur of Apatosaurus and right humerus Brachiosaurus altithorax holotype on wooden pedestal (exhibit) with labels and 6 foot ruler for scale, Geology specimen, Field Columbian Museum, 1905. (Photo by Charles Carpenter/Field Museum Library/Getty Images)

Femur of Apatosaurus and right humerus Brachiosaurus altithorax holotype on wooden pedestal (exhibit) with labels and 6 foot ruler for scale, Geology specimen, Field Columbian Museum, 1905. (Photo by Charles Carpenter/Field Museum Library/Getty Images)

I have no idea why it was put back in a plaster jacket: does anyone?

Back in 2005, when Matt and I visited the Field Museum, the staff were amazingly, almost embarrassingly, helpful. They mounted a whole elaborate project to remove the humerus jacket from the cabinet that held it, so we could get a better look:

dscn1375

Unfortunately, Matt and I were doofuses back in the day: terrible photographers who knew embarrassingly little about appendicular material. So nearly all of our photos are worthless. Here is a rare nice one, showing the humerus in posterodistal aspect. You can see how layers have flaked away towards this end:

dscn1382

Here is the humerus in proximal view — something that’s relevant to my interests, as at tells us about the area of articular cartilage where it connected to the shoulder:

dscn1385

And finally — because it would be rude not to — here is Matt, going the Full Jensen with the humerus:

dscn1395

Next time: what we can learn about the humerus from the mounted skeleton outside the museum!

References

Benson Roger B. J., Nicolás E. Campione, Matthew T. Carrano, Philip D. Mannion, Corwin Sullivan, Paul Upchurch, and David C. Evans. (2014) Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage. PLoS Biology 12(5):e1001853. doi:10.1371/journal.pbio.1001853


The humerus of Brachiosaurus altithorax, part 2: the museum mount

$
0
0

As we noted yesterday, the humerus of the Brachiosaurus altithorax holotype FMNH P25107 is inconveniently embedded in a plaster jacket — but it wasn’t always. That’s very strange. I have an idea about that which I’ll come to later.

Anyway, although the humerus is now half in a jacket and fully inside a cabinet, we can see it from all angles thanks to the cast that’s part of the mounted skeleton outside the Field Museum. (I can definitively state that this is the greatest picnic area in the universe).

dscn9650

As noted in the previous post, Matt and I were idiots back when we visited Chicago, so our photos are mostly useless. We have lots that show the mounted skeleton as art, but very few that are scientifically useful. But what you can make out from the photo above (especially if you click through) is that the textures of the two humeri are very different.

You can see it more clearly from in front:

dscn9672

(There I am, microscopic and easily overlooked, on the left.)

Here’s a close-up of the humeri from that photo, sharpened and contrast/brightness-balanced so you can more easily see what’s going on:

dscn9672-close-up

Contrast the scarred, pitted surface of the right humerus (on the left of the picture) with the much cleaner and bone-like texture of the left one (on the right of the picture). What’s going on here is that the right humerus of the mounted skeleton is a cast of the original element (bad preservation and all) whereas the left humerus is a sculpture. (Or possibly a cast of one of the Giraffatitan humeri, but I doubt that — it’s a bit too clean and seems more robust than those bones.) The real humerus is very distinctive, especially in the progressive flaking away on the lateral side of the distal end.

Of course you can walk all around the cast humerus and photograph it from every angle — both the posterior that is apparent in the jacket, and the anterior that’s face down and inaccessible.

You can walk all around the cast humerus and photograph it from every angle. But we didn’t. Because, as noted here and yesterday (and previously, come to think of it) we used to be idiots back then. As Matt has pithily observed:

“About every three or four months I realize that I’ve spent my entire life up until now being a dumbass; the problem is that ‘now’ keeps moving and every time I think I’ve finally got everything figured out, I later determine that I was/am still a moron.  I distinctly remember having this feeling for the first time in third grade, age of eight, and I keep hoping it will eventually go away, but that hope seems increasingly unfounded.”

That is a hauntingly familiar feeling.

It seems that this cast-right, sculped-left humerus combo is common in Brachiosaurus mounts — I guess because they’re all cloned from the Field Museum’s original. Here, for example (from this post) is the mount at BYU the North American Museum of Ancient Life:

Utah 2008 07 Matt in lift

Once you’ve seen that humerus mismatch, you can’t miss it.

Finally, then — what about this historical oddity that the humerus was once out of its jacket but is now back in? That doesn’t make a lot of sense to me. I can’t really imagine why you’d do that.

So maybe that never happened? We’ve been taking it for granted that the humerus in the old Field-Museum photo is real, but maybe it’s not. Maybe it was a cast, and that cast is still somewhere in the museum (or indeed incorporated into the mount). Maybe when the fossil humerus was brought back from the field, the jacket was removed from the anterior face and that was cast; then this face was rejacketed, the bone was flipped, the posterior face was exposed (as it still is today) and that was cast. Then the two casts were joined together to make an apparently whole humerus.

If that speculation is right, then it should be possible to detect a join running down the lateral and medial faces of the cast humerus that’s in the mount (and apparently in all other mounts). That’s something I’ll look closely for the next time I’m lucky enough to be in Chicago.

I wish it was possible to know this kind of thing. I’d love it if every time a museum mounted a skeleton they published an account of how it was done, as Janensch (1950b) did for the original Giraffatitan mount in Berlin, and Remes (2011) did for the recent remount. Unfortunately I’ve never heard of such a paper regarding the Chicago mount, and I don’t even know how long ago it was done (or if anyone who was involved is still alive). The Wikipedia page says the mount went up in 1993, but gives no reference for that and doesn’t say who did it. Does anyone know?

Update (11:38pm)

Thanks to Ben (no surname given), whose comment below points to a useful 1993 Chicago Tribune article, “Brach To The Future“. This confirms the date of the mount as 1993, unveiled on Saturday 3rd July. The mount is the work of PAST (Prehistoric Animal Structures, Inc.), who bizarrely don’t seem to have a web-site. PAST president Gilles Danis was involved in the process, so he’d be the person to contact about how it was done.

Oh, and here’s another relevant Tribune article: “Out Of The Past“. Steven Godfrey is the key player in this account, so he’s someone else to track down.

References

  • Janensch, Werner. 1950b. Die Skelettrekonstruktion von Brachiosaurus brancai. Palaeontographica (Supplement 7) 3:97-103, and plates VI-VIII.
  • Remes, Kristian, David. M. Unwin, Nicole. Klein, Wolf-Dieter Heinrich, and Oliver Hampe. 2011. Skeletal reconstruction of Brachiosaurus brancai in the Museum für Naturkunde, Berlin: summarizing 70 years of sauropod research. pp. 305-316 in: Nicole Klein, Kristian Remes, Carole T. Gee, and P. Martin Sander (eds.), Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Indiana University Press, Bloomington and Indianapolis.

The humerus of Brachiosaurus altithorax, part 3: the airport mount

$
0
0

Last time we looked at the humeri in the Field Museum’s mounted Brachiosaurus skeleton — especially the right humerus, which is a cast from the holotype, while the left is a sculpture. But Matt’s and my photos of that mount are all pretty much useless scientifically — partly because we were terrible photographers back then, but also partly because the very light background of sky tended to put the skeleton into silhouette and lose a lot of detail.

But fortunately there’s another Brachiosaurus in Chicago!

dscn1156

(We’ve featured this mount once before.)

This in fact the original Brachiosaurus mount that was erected in the Field Museum’s main hall in 1993. When a certain vulgar, over-studied theropod was installed in that hall in 2000, the surprising decision was made to remove the Brachiosaurus to “make room” for it (even though it’s objectively tiny). The mount was not built to be exposed to the elements, so it couldn’t just be moved outdoors. Instead, a new one was made from more suitable materials for the picnic area, and the original mount was moved to O’Hare Airport.

[Aside: what the heck were the museum thinking when they booted Brachiosaurus out of the main hall? However much you love T. rex, and I admit I do, Sue makes a feeble centrepiece compared with a brachiosaur. I can only assume there was some subtle political motivation for reducing their main hall's Awesome Quotient so dramatically. The poor thing was only there seven years.]

Anyway, the original mount is now at Terminal 1 at O’Hare Airport, where it can be photographed less inadequately than outdoors. Here are those contrasting humeri again: the real cast on the right side of the animal (left side of photo) and the sculpture on the left (right side of photo):

dscn1158

And a zoom into the relevant section:

dscn1158-closeup

As it happens, I flew into a different terminal at O’Hare. But I knew that this mount was in Terminal 1, so before I get the transit to my hotel, I dragged my luggage across to Terminal 1 and begged the ticket clerk to let me through into the departure area so I could look at it. I don’t now remember exactly what the sequence of events was, but I do recall that phone-calls were made and supervisors were consulted. In the end, someone on staff gave me a platform ticket, and I was able to go and spend a quality hour with this glorious object.

It also meant I got to watch nearly every single traveller amble straight past Brachiosaurus giving it literally not even a single glance — see the first photo for an example. Truly depressing.

Anyway, I was able to get some slightly better photos of this cast humerus than I subsequently got of the outdoor mount. Though not very many, because — stop me if you’ve heard this — I was young and stupid then.

Anyway, here is the humerus in anterior view. Or as close to anterior as I could manage. By holding the camera above my head, I could get it nearly level with the distal margin of the mounted bone, so what we have here is really more like anterodistal:

dscn1161-brightened

And here is that some bone in lateral view (again, really laterodistal). From this angle, you can really see how shapeless parts of the lateral border of the cast are — which is off, because there are sharp lips on the actual fossil.

dscn1163

In terms of general appreciation of the bone, this next one, in anterolaterodistal view,  is probably best — the light caught it in an informative way. Unfortunately, I cut off the distal margin. Sorry.

dscn1164

As you can see, the level of detail in the cast is mostly pretty good. For example, you can clearly make out the broken-off base of the deltopectoral crest (the tall light-coloured oval about a quarter of the way down and a third of the way across the bone). That makes the lumpenness of the distal part of the lateral aspect all the more mysterious.

Finally, here are both humeri, more or less from the left, so that the real cast is in something approaching medial view.

dscn1165

From this angle, you can see that the humerus is noticeably less anteroposteriorly deep than its transverse width. We’ll see this theme cropping up again with brachiosaur limb bones — stay tuned for future posts!

Also of interest: the very nice sculpted humerus on the left side has a complete deltopectoral crest — modelled, I imagine, after those of the various Giraffatitan humeri. It also has a finished distal end which is much broader than that of the cast humerus. In this, it’s probably right, as the real bone suffered from some decay.

And that, I am afraid, is all: stupidly, I neglected to photograph the humerus in posterior aspect, or any of the diagonals other than anterolateral.

Next time: exciting news about the relative breadth of humerus and femur in brachiosaurs!



Gilles Danis of P.A.S.T on the Chicago Brachiosaurus mount

$
0
0

After P.A.S.T president Gilles Danis commented on our post about the Chicago airport Brachiosaurus mount, I got into an interesting email conversation with him. Here, posted with his kind permission and only lightly edited, are his thoughts on the Brachiosaurus mount.

Brachiosaurus mount at Chicago O'Hare Airport, terminal one. Pelvis in ventral view, anterior to the left.

Brachiosaurus mount at Chicago O’Hare Airport, terminal one. Pelvis in ventral view, anterior to the left.

Gilles writes:

The story of this mount (s) is chequered. The casts of real material include the sacrum, the caudal, a number of dorsals, some rib fragments, one femur, a very badly eroded humerus and a coracoid. [Update: also the right ilium, as Gilles subsequently confirmed by email.]

On the mount that was in the museum and later was moved to the airport, we had a peculiar situation to deal with. Because museums like to have people walking under the rib cage of high sauropods, this becomes a safety hazard for two reasons. The first is that it cannot be allowed to fall on the people (obviously) and even though the cast was of light plastic, the engineers insisted in overbuilding the support (namely the legs and arms). Also because while in the Field Museum, it stood in the path of a fire exit, we had to have a certain amount of distance between the front and hind limbs (I forget the exact measurement). The only way that we could achieve that was to add two vertebrae for a total of 12 dorsals. We chose to duplicate two of real vertebrae at the lower end of the dorsal section.

The Brachiosaurus mount in its original position in the main hall of the Field Museum. I can't find a higher resolution version of this photo -- can anyone help?

The Brachiosaurus mount in its original position in the main hall of the Field Museum. I can’t find a higher resolution version of this photo — can anyone help?

The funny thing is only one person figured that one out and that was Bill Simpson the collections manager. Also to support this structure, we were asked to used way oversized steel in the limbs which meant that we had to “inflate” the real humerus and femur to accommodate the material. This is why the cast is so bad; it is half stuffing.

It is interested to see how a lie perpetuates itself. The following year, the Hayashibara museum ordered a mount of the same skeleton and they were very interested in getting the distance between the feet and manus. So we, again, had to make a Brachiosaurus limoensis.

Not satisfied with this silly situation, Disney came to us in 1996 and ordered that very same skeleton again with the stretch limo factor for another dinosaur that you walk under for the Wild Animal Kingdom park in Orlando. Up to that point, only Bill Simpson had realized the error. But I had just had it up to there with these stretch dinosaurs and revealed the problem. After that, in 1999, we replaced the skeleton in Stanley Field Hall with one on the terrace to make room for Sue the T. rex. On this Brachiosaurus, we have the normal 10 dorsals. The last Brachiosaurus we mounted is in the North American Museum of Ancient Life (N.A.M.A.L.) at Thanksgiving Point, Lehi, Utah, again a normal skeleton.

If this was not enough we restored Seismosaurus halli (now Diplodocus hallorum). This project was sponsored by a Japanese company who was to get the first mount. They took Gillette’s publication and read that the skeleton would have been 150′ long or 50 meters. We soon realized that there was a mistake, that the tail was not missing a huge section but had simply drifted away from the sacrum and the skeleton would not be even close to the predicted length. The Japanese would have none of it. After months of negotiations, we arrived at a compromise and we made the skeleton 40 meters long, 133′+ by adding some whiplash vertebrae until it was that long. By then I had had enough and threw in the towel but not before mounting another Seismosaurus for the museum is Albuquerque which is correct.

As for the Berlin brachiosaur: I spent some time in Berlin measuring, photographing and drawing (Donna Sloan did the drawing) the original material there, but they would not allow us to mould it. What I found interesting is that in 1992 when I was there, most of the skeleton of the mount was not original but it was not cast either. It was sculpted wood.

I have many more tails (pun, ha,ha) about sauropods. I should write them down sometime.

Many thanks to Gilles for allowing us to reproduce this important information.

Gilles’ list of real material that was cast for the mount includes very nearly all of the holotype FMNH P25107 — assuming that “a number of dorsals” means seven, the number that Riggs excavated and had prepared. The only fossil elements not apparently appearing are the fragmentary first caudal and the right ilium. But it seems to me from some of my photos of the airport mount (see the image at the top) that a cast of the right ilium was used. [Update: yes, Gilles confirmed by email that the right ilium was indeed cast from real material.]

Regarding the number of dorsal vertebrae: it may have been circumstances that forced P.A.S.T to give the mount 12 dorsals, but Migeod’s pre-description of the NHM’s Tendaguru brachiosaur gives good reason to think this is likely the correct count.

Similarly, although the torso was therefore longer than Gilles had intended, it might have ended up correct, as careful comparison of the lengths of the Brachiosaurus and Giraffatitan dorsals suggests that the torso of the former was about 23% longer.

To my shame, I’d not realised that the Brachiosaurus at the airport has two more dorsals than the one in the Field Museum picnic area, despite Matt having posted a ventral-view photo of the airport mount that clearly shows the twelve dorsals and a lateral-view photo of the museum mount that clearly shows ten.

When Gilles says “most of the skeleton of the [Berlin] mount was not original but it was not cast either”, I assume he’s referring to the presacral vertebrae, which as Janensch explained in his 1950 paper about that mount were too heavy and fragile to mount. The sculptures in Janensch’s mount were not particularly good, but they have been replaced by much better ones in the remount.

 


The Field Museum’s photo-archives tumblr, featuring: airbrushing dorsals

$
0
0

In recent photo posts on the mounted Brachiosaurus skeleton and its bones in the ground, I’ve lamented that the Field Museum’s online photo archive is so unhelpful: for example, if it has a search facility, I’ve not been able to find it.

But the good news is that there’s a Field Museum Photo Archives tumblr. Its coverage is of course spotty, but it gives us at least some chance of finding useful brachiosaur images. Like this one of the sixth presacral vertebra (i.e. probably D7 in a column of 12 dorsals):

tumblr_mlrvdcANCj1s5mxl9o1_1280

It’s instructive to compare that with Riggs’s (1904: plate LXXII) illustration of the same vertebra in the same aspect, in which he almost literally airbrushed out the jigsaw-puzzle complexity of the preserved bone surface:

Riggs1904-plate-LXXII-presacral-6.right-lateral

 

More disturbing still, compare that old photograph with my own (terrible) 2005 photo of the same vertebra:

dscn1404-rotated-cropped-enhanced

It looks very much as though the vertebra itself — not just Riggs’s illustration — has been “improved” since the older photo was taken exactly a century earlier in 1905. This is a constant problem when dealing with old fossils.

Here are three more interesting photos from the Tumblr. First, the Brachiosaurus fossils in the field:

tumblr_mkxwevwaqi1s5mxl9o1_1280

This is evidently from later in the excavation process than the previous photo of this area, since much of the material is now jacketed. That’s the femur in front of shot, here seen in anteromedial view, with the top towards the right.

Next up, this photo purports to be “Thirteen men including Security Guard unloading dorsal vertebrae of type specimen Brachiosaurus fossil”:

tumblr_mk9snb7ghp1s5mxl9o1_1280

But in fact it’s not Brachiosaurus — the neural spines are too tall and slender. I am pretty sure this is Riggs’s Apatosaurus — the rightmost dorsal has that distinctive notch on the dorsal aspect of the neural spine. And indeed, checking his monograph on that specimen (Riggs 1903: plate XLVI), I see that its dorsals were distorted in this way, and that the front-centre vert is a fine match for its D10.

Finally, there’s this one of the prep room:

tumblr_mk0kgrIURE1s5mxl9o1_1280

On the far left, we have the still-jacketed Brachiosaurus femur; next to it stands Harold W. Menke, who discovered the fossil; and to his right is Elmer S. Riggs, who wrote the description.

Those are all the Brachiosaurus-related images I’ve been able to find on the tumblr. But do let me know if you find any others.

References

  • Riggs, Elmer S. 1903. Structure and relationships of opisthocoelian dinosaurs. Part I: Apatosaurus Marsh. Field Columbian Museum, Geological Series 2:165-196.
  • Riggs, Elmer S. 1904. Structure and relationships of opisthocoelian dinosaurs. Part II, the Brachiosauridae. Field Columbian Museum, Geological Series 2:229-247.

 


Brian Engh is unleashing monsters

$
0
0

We feature a lot of Brian Engh’s stuff here–enough that he has his own category. But lately he has really been outdoing himself.

The wave of awesome started last year, when Brian started posting videos showing builds and suit tests for monsters–monster suits, monster puppets, monster you-name-its. Like this monster-sculpting timelapse from last August:

And this suit test from last October:

Brian even wrote a blog post about how he builds monsters.

Things really ramped up this May with the release of “In Mountains”, the first video in a three-part series from Brian’s Earth Beasts Awaken album (which is badass, and available for free here).

If you’re thinking that the Mountain Monster has some Estemmenosuchus in its background, you are correct–that astonishing real-world critter was one of Brian’s inspirations, among many others.

More awesomeness is coming in July, when the next video, “Call to Awaken”, is slated to be released. Here’s a teaser:

I have even more exciting Brian-Engh-related news, but I am not at liberty to discuss that just yet. Hopefully sometime this fall. Stay tuned, true believers.

 


A beautiful Lego Diplodocus skeleton

$
0
0

Check out this beautiful Lego Diplodocus:

10954093715_c4c7fe19ec_k-crop

(Click through for the full image at full size.)

I particularly like the little touch of having of bunch of Lego Victorian gentleman scientists clustered around it, though they’re probably a bit too big for the skeleton.

This is the work of MolochBaal, and all rights are reserved. You can see five more views of this model in his Flickr gallery. I especially admire how he’s managed to get the vertebral transitions pretty smooth, the careful use of separate radius/ulna and tibia/fibula, and the use of a transparent brick in the skull to represent the antorbital fenestra.

The forefeet are wrong — their toes should not be splayed out — but you can’t blame MolochBaal for that, as he was copying the mounted CM 84/94 cast in the Madrid museum.

 


Xenoposeidon in glorious 3D

$
0
0

Get your red/cyan anaglyph glasses on, and feast your eyes:

xenoposeidon--nhm-r2095--left-lateral--anaglyph

Click through for stupidly high resolution.

Those of you who are still too cheap to have sprung 99¢ for a pair of glasses, you can make do with this grossly inferior wigglegram:

xenoposeidon--nhm-r2095--left-lateral--wigglegram


The revolution will be comic-booked

$
0
0

 

TMNT Turtles in Time cover

So, this is on the shelves right now. Underage anthropomorphic martial chelonian cargo notwithstanding, the Triceratops on the cover is pretty standard.

TMNH Turtles in Time hell yeah Triceratops

The one on the inside is much less so. Or, at least it would have been up until a couple of years ago. Apparently, dinos that are All-Yesterdays-ed out are a pop culture Thing now.

TMNT Turtles in Time hell yeah T-rex

I’m quite taken with this decidedly un-shrink-wrapped T. rex. But then I would be, wouldn’t I? He’s a big guy with a beard who’s interested in turtles–he’s about one spatial dimension away from being me.

So anyway, if you dig on dinos, you might want to pick this one up. Kudos to cover artist David Petersen for rocking it old school, and to interior artist Ross Campbell for going next-gen.

Immediate Update: Arf, about 60 seconds after hitting “publish”, I realized that those rascals at Love in the Time of Chasmosaurs had gotten here first. Go read their much better post, and then kiss your productive time away as you get sucked into whatever cool stuff they’ve been posting on lately. Seriously, be careful over there.


SV-POW! showdown: Supersaurus vs Brachiosaurus and Diplodocus

$
0
0

Supersaurus vs Brachiosaurus - BYU 9024 and FMNH P25107

This was inspired by an email Mike sent a couple of days ago:

Remind yourself of the awesomeness of Giraffatitan:
http://svpow.files.wordpress.com/2008/11/mike-by-jango-elbow.jpeg

Now think of this. Its neck is 8.5m long. Knock of one measly meter — for example, by removing one vertebra from the middle of the neck — and you have 7.5 m.

Supersaurus’s neck was probably TWICE that long.

Holy poo.

I replied that I was indeed freaked out, and that it had given me an idea for a post, which you are now reading. I didn’t have a Giraffatitan that was sufficiently distortion-free, so I used my old trusty Brachiosaurus. The vertebra you see there next to Mike and next to the neck of Brachiosaurus is BYU 9024, the longest vertebra that has ever been found from anything, ever.

Regarding the neck length of Supersaurus, and how BYU 9024 came to be referred to Supersaurus, here’s the relevant chunk of my dissertation (Wedel 2007: pp. 208-209):

Supersaurus is without question the longest-necked animal with preserved cervical material. Jim Jensen recovered a single cervical vertebra of Supersaurus from Dry Mesa Quarry in western Colorado. The vertebra, BYU 9024, was originally referred to “Ultrasauros”. Later, both the cervical and the holotype dorsal of “Ultrasauros” were shown to belong to a diplodocid, and they were separately referred to Supersaurus by Jensen (1987) and Curtice et al. (1996), respectively.

BYU 9024 has a centrum length of 1378 mm, and a functional length of 1203 mm (Figure 4-3). At 1400 mm, the longest vertebra of Sauroposeidon is marginally longer in total length [see this post for a visual comparison]. However, that length includes the prezygapophyses, which overhang the condyle, and which are missing from BYU 9024. The centrum length of the largest Sauroposeidon vertebra is about 1250 mm, and the functional length is 1190 mm. BYU 9024 therefore has the largest centrum length and functional length of any vertebra that has ever been discovered for any animal. Furthermore, the Supersaurus vertebra is much larger than the Sauroposeidon vertebrae in diameter, and it is a much more massive element overall.

Neck length estimates for Supersaurus vary depending on the taxon chosen for comparison and the serial position assumed for BYU 9024. The vertebra shares many similarities with Barosaurus that are not found in other diplodocines, including a proportionally long centrum, dual posterior centrodiapophyseal laminae, a low neural spine, and ventrolateral flanges that connect to the parapophyses (and thus might be considered posterior centroparapophyseal laminae, similar to those of Sauroposeidon). The neural spine of BYU 9024 is very low and only very slightly bifurcated at its apex. In these characters, it is most similar to C9 of Barosaurus. However, theproportions of the centrum of BYU 9024 are more similar to those of C14 of Barosaurus, which is the longest vertebra of the neck in AMNH 6341. BYU 9024 is 1.6 times as long as C14 of AMNH 6341 and 1.9 times as long as C9. If it was built like that of Barosaurus, the neck of Supersaurus was at least 13.7 meters (44.8 feet) long, and may have been as long as 16.2 meters (53.2 feet).

Based on new material from Wyoming, Lovelace et al. (2005 [published as Lovelace et al. 2008]) noted potential synapomorphies shared by Supersaurus and Apatosaurus. BYU 9024 does not closely resemble any of the cervical vertebrae of Apatosaurus. Instead of trying to assign its serial position based on morphology, I conservatively assume that it is the longest vertebra in the series if it is from an Apatosaurus-like neck. At 2.7 times longer than C11 of CM 3018, BYU 9024 implies an Apatosaurus-like neck about 13.3 meters
(43.6 feet) long.

Supersaurus vs Diplodocus BYU 9024 and USNM 10865 - Gilmore 1932 pl 6

Bonus comparo: BYU 9024 vs USNM 10865, the mounted Diplodocus longus at the Smithsonian, modified from Gilmore 1932 (plate 6). For this I scaled BYU 9024 against the 1.6-meter femur of this specimen.

If you’d like to gaze upon BYU 9024 without distraction, or put it into a composite of your own, here you go:

Supersaurus cervical BYU 9024

References

 



Please welcome Rukwatitan (over on Mark Witton’s blog)

Spinosaurus fishiness, part n

$
0
0

UPDATE the next day: Since I published this post, it’s become clear that the similarities in the two images are in fact convergence. Davide Bonadonna got in touch with Mike and me, and he has been very gracious and conciliatory. In fact, he volunteered to let us post the making-of images for his painting, which I will do shortly. I’m sorry that my initial post was more inquisitorial than inquisitive, and implied wrongdoing on Davide’s part. Rather than edit it out of existence, I’m going to let it stand as a cautionary signal to my future self. Stand by for the new post as soon as I can get it assembled and published….aaaand here it is.

——-

Scott Hartman has already explainedtwice–that the super-short-legged, “Ambulocetus-grade” Spinosaurus from the new Ibrahim et al. (2014) paper has some major problems. Those are both good, careful, thought-provoking posts and you should go read them.

I’m writing about something else fishy with the “new” Spinosaurus and, in particular, National Geographic’s media push. Let’s check out this life restoration, newly prepared for the Spinosaurus story:

Spinosaurus - Nat Geo

And now let’s look at this one by Brian Engh from a couple of years ago, borrowed from Brian’s art page:

Spinosaurus KemKem - Brian Engh

And let’s count up the similarities:

  • Two spinosaurs, one in the foreground with its head mostly or entirely submerged as it bites a fish, and one further back on the right with its head complete out of the water;
  • Two turtles, one in the foreground with its head out of the water, and one further back on the right fully submerged;
  • A good diversity of fish swimming around in the foreground;
  • Pterosaurs flying way back in the background;

And finally, and most interestingly to me:

  • A curved-water-surface, fish-eye perspective to the whole scene.

All the bits are moved around a bit, but pretty much everything in Brian’s picture is in the new one. Is it all just a big coincidence–or rather, a fairly lengthy series of coincidences? Seems unlikely. Your thoughts are welcome.


Guest post: the genesis of Davide Bonadonna’s Spinosaurus painting

$
0
0

In the last post I pointed out some similarities between Davide Bonadonna’s new Spinosaurus painting and Brian Engh’s Spinosaurus painting from 2010. I also suggested that Davide might have borrowed from Brian and might have crossed a line in doing so. I was mistaken about that, as this post will show, and I’m sorry. 

I woke up this morning to find that Mike and Davide had a very fruitful and collegial discussion going in email, which they had kindly copied me on. Davide had offered to send his in-progress sketches, Mike had offered to put them up here as a guest post, “because it’ll be a fascinating post — NOT as any kind of defense” (his words, with which I fully agree), and Davide had kindly assented (Brian’s post on how his Spinosaurus came to be is on his own blog). Davide and I corresponded directly this morning and he’s been very gracious and generous with his time, thoughts, and art.

We are always thrilled when we have the opportunity to show how awesome paleoart came into being (like this and this), and this case is no exception. Best now if I just get out of the way, so — over to Davide!

— Matt

——————-

About the illustration:

In early November 2013, I was commissioned by NGMag, via Nizar Ibrahim of the University of Chicago, to create an illustration for a page in the October 2014 issue.

Working for about six years with Simone Maganuco, co-author of the study, on the Spinosaurus (I made the digital model from which the model exhibited in Washington was printed, Nizar left us carte blanche.

Some key points were essential, however: showing the Spinosaurus while swimming, his webbed feet, show its prey in the environment of Kemkem, possibly including all the major players in the scene, Mawsonia, Alanqa and Carcharodontosaurus.

Problems: the Spinosaurus is very long, the subjects to be represented too many. It was decided first of all to exclude the Carcharodontosaurus and then framing a foreshortened Spinosaurus, which would allow us to make room for the actors. Given the size and shape of Spinosaurus we knew that we would inevitably get what I call the “Luis Rey-effect” style. So, after gathering plenty of references, I made my sketches, suggesting a frontal dynamic sight (4) and a back view (1-2-3), presenting both solutions to Nizar at last SVP in L.A.

1

1

2-Spinobozza-1

2

3-SpinoNG_bozza-1

3

4-SpinoNG_bozza-2

4

Meanwhile the size of the final art had to be changed because from the mag they asked for a double opening page of the article. And in the same time, thanks to a friend suggestion, I drew a third version (5), with the Idea to put all them together (8).

5

5

8

8

But the scene was too crowded and we decided to use just two animals, so I tried different combinations (6).

6

6

And the best one was to put both frontal versions together, one close to the other (7).

7

7

And again the two-pages image had to be changed because NG decided to turn it in a three-pages wide illustration, something that helped me to put Mawsonia in the background (9).

9

9

When finished, before approval, the NG editorial staff asked me to put an animal familiar to the modern public, which could help the reader to feel how big was the Spinosaurus, and a turtle was the chosen one (10).

10

10

Brian Engh’s illustration:

I vaguely remember I once had seen Brian’s illustration before today and I did not put it in my archive as a reference. All my main references are these: crocodile photos, patchworks made with my 3D digital model and Dinoraul one (11).

11

11

The water view comes from an NG poster about marine reptiles (12).

12-Spinonuoto_NG2_reference

12

Most of my illustrations have a fisheye distortion, this is not the first one I make (see on my website Scipionyx, Neptunidraco, Diplodocus-Allosaurus and others).

You can easily see from the sketches progress how a traditional vanishing point becomes gradually a curve.

Conclusion:

This is a case of illustrative convergence. ;-)

That’s all folks, I think. If you have any other doubt, just ask. I’m at your disposal.

Best,

Davide

http://www.davidebonadonna.it/

https://www.facebook.com/pages/Davide-Bonadonna/286308368137641?fref=ts


Move over, All Yesterdays: It’s time for #MikeTaylorAwesomeDinoArt!

$
0
0



art

  




salamander

  








platyhystrix

  




another-temnospondyl

  




feathered-diplodocus


tyrannosaur


ankylosaur

  




braincase




  




diadectes

  




salamander

  




salamander-silhouette

  




gar

  




fish


shark



stamp-trex

  





lampreyhagfish

  




tsintaosaurus

The freakily consistent colour palette of Wedel and Taylor (2013) on caudal pneumaticity

$
0
0

Back in 2013, when we were in the last stages of preparing our paper Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus (Wedel and Taylor 2013b), I noticed that, purely by chance, all ten of the illustrations shared much the same limited colour palette: pale brows and blues (and of course black and white). I’ve always found this strangely appealing. Here’s a composite:

wedel-taylor-2013b-all-figures

I’m really happy with this coincidence. In fact I think I might get it printed up as a poster for my office.

(Thought: if I did, would anyone else be interested in buying it?)

Update (a couple of hours later)

At Matt’s suggestion, I switched the order of figures 7 and 8 (the last two on the third row) to get the following version of the image. It break the canonical order of the figures, but it’s visually more pleasing.

wedel-taylor-2013b-all-figures-v2

Now we should write an updated version of the paper that reverses the order in which we refer to figures 7 and 8 :-)

References

  • Wedel, Mathew J., and Michael P. Taylor. 2013. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLOS ONE 8(10):e78213. 14 pages. doi:10.1371/journal.pone.0078213

Viewing all 165 articles
Browse latest View live